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The extended mild-slope equation and the modified mild-slope equation have been
used successfully to study refraction–diffraction of linear water waves by steep bottom
roughness. Their consistency has been questioned. A systematic derivation of these
model equations exposes and illuminates their rationale. Their good performance
stems from an accurate representation of (Class I) Bragg resonance. As a benchmark
test case, we consider scattering by a sloping bottom with random roughness. The
rates of scattering found for the mean field in both of the approximate models agree
exactly with the full theory for scattering by small roughness. This greatly improves
the limited agreement which was found for the mild-slope equation, and establishes
the validity of the above model equations. The study involves operator calculus, a
powerful method for simplifying problems with variable coefficients. The augmented
mild-slope equation serves to consistently derive accurate model equations.

1. Introduction
Wave propagation problems can be greatly simplified when the geometry of the

basin is simple, e.g. constant depth. By separation of variables the dimension of
the problem can be reduced, eliminating the vertical coordinate. We consider the
linear theory of small-amplitude water waves in water of intermediate depth. More
specifically, we consider the scattering due to terms which are linear in the depth
variation and its derivatives (we call it Class I scattering). This scattering is typically
the most important. The scattering is dominated by Bragg resonance (which is called
Class I, in this case; cf. Liu & Yue 1998), in which the wave vectors of the incident
wave and of the bottom roughness add up to the wave vector of the scattered
field, forming an isosceles triangle in the wave-vector plane. In the case of slowly
varying depth, approximate equations for propagation, such as the mild-slope equation
(MSE) have been derived (Berkhoff 1972). These equations are in terms of ϕ(x, y),
the complex amplitude of the monochromatic velocity potential at the free surface.
When studying scattering by steeper roughness, the MSE does not perform well.
When the bottom roughness is small, its effect (to first order) can be accounted for (to
a good approximation) by the extended MSE (EMSE, cf. Kirby 1986). The modified
MSE (MMSE, cf. Chamberlain & Porter 1995) introduces a different correction term
to the MSE, proportional to the second derivative of the bottom depth, enhancing
its performance. All of these equations are written explicitly in § 2. A number of
comparisons with experiments and numerical solutions of the full (linear) problem
have shown that the EMSE and MMSE give very good descriptions of (Class I Bragg
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resonance) scattering (e.g. Kirby 1986; Chamberlain & Porter 1995; Porter & Staziker
1995; Miles & Chamberlain 1998). This might seem to be due to the inclusion of the
correct terms in |∇h|2 and in ∇2h. Is this the correct explanation?

Miles & Chamberlain (1998) introduce a hierarchy of MSEs in terms of powers of
the bottom slope |∇h|, which is assumed to be small. The MMSE can be derived from
a Lagrangian using a trial function for the velocity potential based on the solution
on a constant depth, φ = ϕ(x, y)F(z, h), with F = sech(kh) cosh k(z + h) (z is the
vertical coordinate, h is the fluid depth and ∇ = (∂x, ∂y) is the horizontal gradient).
Discarding a term in |∇h|2 and a term in the form g2(k, h)∇2hϕ, reduces the MMSE
to the MSE. They note that the MMSE is not consistent with their hierarchy – since
the trial function has an error which is of order |∇h|, hence the equation should have
errors of order |∇h|2 (all the terms are scaled by h). To derive a higher-order equation,
they use a trial function which includes the appropriate O(|∇h|) term, obtaining a
Lagrangian which contains the appropriate O(|∇h|2) terms. However, they neglect
terms of order ∇2h in their trial function. These terms are important, at that order
(unless ∇2h is negligible compared to |∇h|). In spite of their criticism of the MMSE,
they use it, rather than their new equation, for calculating scattering by a ramp and
by a sinusoidal patch. Both these problems are dominated by Class I scattering, for
which O(|∇h|2) terms are irrelevant. In contrast to this irrelevance, all the terms in
∇nh, n = 1, 2, 3, . . . , are equally relevant for Class I scattering by roughness with O(1)
steepness. These terms are given in the augmented MSE, in § 3 (cf. Agnon 1999).
We focus our attention on these terms rather than on the O(|∇h|2) terms (which we
discard). How can one account for an infinite series of terms? The key to this problem
is found through considering the operator of detuning from resonance, µ = ∇2 + k2,
which operates on the velocity potential φ. Miles & Chamberlain (1988) show that
ϕF indeed gives the velocity potential with an O(µ) error. Thus, the MMSE is
correct to (and including) O(µ), which explains its accuracy in describing (Class I)
resonant Bragg scattering. For those components of the wave field which are in exact
resonance with the bottom roughness, the infinite series of terms in ∇nh, n = 2, 3, . . . ,
adds up exactly to the term g2∇2hϕ in the MMSE (cf. Agnon 1999). This is quite
elegant. Thus, it is indeed clear that the O(|∇h|2) term in the MMSE should not be
retained. However, it is the term g2∇2h that is responsible for the good performance
of this equation in Class I Bragg resonance. Hence, for Class I scattering, the relevant
hierarchy of equations is in terms of powers of µ. The MSE does not belong in this
hierarchy; it is replaced by the MMSE, by maintaining the term g2∇2hϕ.

The present work addresses the propagation of small-amplitude surface gravity
waves over a statistically rough bottom. We compare the full (linear) problem, the
EMSE and the MMSE. The full solution for the case of constant mean depth was
addressed in Dyatlov & Pelinovsky (1990) using a Fourier transform method. They
included the first-order effects of the bottom roughness, and found that the mean
field was attenuated due to scattering into the fluctuation field (this attenuation is not
related to friction; it is solely due to transfer into the incoherent field). Examining their
result, we realize that it depends only on the components of the bottom roughness
which are in exact resonance with the wave field. Pelinovsky, Razin & Sasorova (1998,
referred to as PRS hereafter) have applied the MSE to the same problem, in order
to test its applicability. Examining their results, we realize again that the attenuation
due to their dispersion equation depends only on the resonant interaction with the
bottom. However, the agreement of the MSE with the first-order theory was limited
to either:

1. the limit of shallow water (k0h0 � 1, where h0 is the mean depth and k0 is the



Accurate refraction–diffraction equations for water waves 303

corresponding wavenumber), in which all the waves are nearly resonant, and have
the same (uniform) vertical structure; or

2. the limit of large-scale roughness, where the scattered field and the incident field
have nearly the same wavenumber, and hence similar vertical structure – thus they
are in near resonance with the large-scale bottom roughness.

These results can be understood as follows: the MSE is an approximation which
neglects terms in the second (and higher) derivatives of the depth. The effect of these
terms diminishes in the above cases 1 (in which small-scale roughness is irrelevant to
first-order resonant scattering of long waves) and 2 (in which the second derivative
of the depth is small). In the present work we make use of the property of the
extended MSE (EMSE) and the modified MSE (MMSE) which give an accurate
representation of the wave–bottom interaction in the case of resonance, for any k0h0

and for any scale of the bottom roughness (as shown in Agnon 1999, using an
accurate, augmented MSE). We apply the mean field method to derive dispersion
equations for the mean field in the EMSE and for the MMSE. These models yield
exactly the same attenuation as does the full first-order solution. This is our first
result. We further extend the analysis to the case of a slowly varying mean depth.
Here the Fourier method approach no longer applies and we use operator calculus.
The pseudo-differential notation simplifies the analysis, and facilitates the separate
(and different) treatment of the slow (but not small) mean-depth variation, and
the small (but not necessarily slow) bottom roughness. In § 2 we solve the MMSE
and EMSE, and in § 3 we solve the full (first-order) potential problem, using the
augmented MSE. The bottom roughness is assumed to be homogeneous, but not
necessarily isotropic. In § 4 we discuss the consistent approximation leading to the
MMSE. The perfect agreement with the full linear theory found for the damping
rate, demonstrates the validity of the EMSE and MMSE for describing scattering of
waves by a variable-depth, non-isotropic rough bottom.

2. Solution using the model equations
The problem considered is the propagation of irrotational water waves over a

rough bottom. The fluid occupies at rest the domain −h < z < 0, where h(x, y) =
h0(x, y) + χ(x, y) and ∇h0 = O(ε), χ/h = O(ε), ∇2h0 = O(ε2), ε� 1. χ(x, y) are random
depth fluctuations with zero mean. ∇ = (∂x, ∂y) is the horizontal gradient. In the
framework of the MSE and its variants, the flow field can be described in terms of
the value of the complex velocity potential at the free surface, which is written in the
form

ϕ(x, y) exp(iωt)

where ω is the wave angular frequency, related to its wavenumber k through the
linear dispersion relation

ω2 = gk tanh kh (1)

g is acceleration due to gravity, i =
√−1.

The MSE (and its modification and extensions) were traditionally obtained by
approximating the complex velocity potential φ in the form

φ = ϕ(x, y)Z(h, z) exp(iωt), Z(h, z) ≡ sech(kh) cosh(k(z + h)),

i.e. the vertical structure is that of free waves. In Agnon (1999), operator calculus
is used to show rigorously that this is valid at Class I Bragg resonance. The MSE
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neglects terms in ∇2h, ∇3h, . . . , hence it is only valid on gentle bathymetries (scattering
by large-scale roughness). The EMSE and MMSE effectively keep all these terms
(at Class I Bragg resonance) and are thus valid (at resonance) for the full range of
roughness scales. The EMSE (Kirby 1986) has the form

(∇2 + k2
0)ϕ+ uh−1

0 ∇h0 · ∇ϕ− vh−1
0 ∇χ · ∇ϕ+ vk2

0χϕ = O(∇h)2 (2)

where

c0cg0u = h0

d(c0cg0)

dh0

so

u∇h0 = h0

∇(c0cg0)

c0cg0

, v =
h0

k2
0

∂(k2
0)

∂h0

= −sech2(k0h0)gh0

c0cg0

; (3)

c = ω/k is the wave celerity, cg = ∂ω/∂k its group velocity and the subscript 0 stands
for the value at h0. The MMSE (Chamberlain & Porter 1995) has the form

(∇2 + k2)ϕ+ uh−1∇h · ∇ϕ = −sh−1(∇2h)ϕ+ O(∇h)2 (4)

where

s(k, h) =
gh

ccg

∫ 0

−h
Z Zhdz.

On a rough bottom, (4) can be expressed as

(∇2 + k2
0)ϕ+ uh−1

0 ∇h · ∇ϕ+ h−1
0 u∇χ · ∇ϕ+ sh−1

0 (∇2χ)ϕ+ vh−1
0 k2

0χϕ = O(∇h)2 (5)

Assuming the vertical structure to be in the form of Z, equation (2) and (4) are
equivalent (cf. Chamberlain & Porter 1995). This assumption is valid at Class I Bragg
resonance.

In order to simplify the analysis, we perform a Liouville transformation that
eliminates the term in ∇h0, and transforms the left-hand side of (2) into a Helmholtz
equation (e.g. Mei 1989). This reduces the problem to one that is effectively equivalent
to the case of constant h0. We obtain

(∇2 + k2
c )ψ = h−1

0 v(∇χ · ∇ψ − k2
c χψ) + O(∇h)2, (6)

where

ψ = (c0cg0)
1/2ϕ, k2

c = k2
0 − ∇

2(c0cg0)
1/2

(c0cg0)1/2
; (7)

since the difference between kc and k0 is O(ε2), we set kc = k0.
Similarly, we obtain from (5)

(∇2 + k2
0)ψ = −h−1

0 u∇χ · ∇ψ − h−1
0 s(∇2χ)ψ − h−1

0 k2
0vχψ + O(∇h)2. (8)

Following PRS we obtain from the MSE

(∇2 + k2
0)ψ = −h−1

0 u∇χ · ∇ψ − h−1
0 k2

0vχψ + O(∇2h) + O(∇h)2. (9)

We continue the derivation with the transformed variable, ψ.
To study wave scattering in a basin with weakly rough topography, the mean field

method is used (e.g. Howe 1971). This method presents the wave field in the form
ψ = ψ0+ψ′: ψ0 is the coherent, mean field; ψ′ is the incoherent, fluctuating (zero-mean)
field, assumed to be weak due to the weak random variability of the bottom depth.
After using a perturbation method, the incoherent component can be eliminated and
a closed integro-differential equation is obtained for the mean field component. This
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approach was used to find the attenuation coefficient for a monochromatic wave in
the framework of linear potential theory (Dyatlov & Pelinovsky 1990) and in the
framework of the MSE (PRS). Here this approach will be applied to (5). The same
approach applies to (4).

Taking an ensemble average (as in Howe 1971, denoted by 〈〉) of the transformed
EMSE (5), we obtain

(∇2 + k2
0)ψ0 − h−1

0 v〈∇χ · ∇ψ′〉+ h−1
0 vk2

0〈χψ′〉 = 0. (10)

Subtracting (9) from (5) we obtain at the leading order the following equation
for ψ′:

(∇2 + k2
0)ψ′ − h−1

0 v〈∇χ · ∇ψ0〉+ h−1
0 vk2

0〈χψ0〉 = 0. (11)

We now operate on the last equation with (∇2 + k2
0)−1. We find

ψ′ = (∇2 + k2
0)−1h−1

0 v(〈∇χ · ∇ψ0〉 − k2
0〈χψ0〉). (12)

The operators can be evaluated in Fourier space, since the commutator of ∇ and
k0, ∇k0, is O(ε) and can be neglected.

We may now follow the analysis of PRS, regarding the classical MSE. However,
we replace their u and v by the corresponding coefficients from the EMSE.

The depth fluctuations are assumed to be statistically homogeneous, as in PRS, but
not necessarily isotropic, so that

〈χ̂(q − λ)χ̂(λ− ξ)〉 = 〈χ2〉T (|q − λ|, α)δ(q − ξ), (13)

where χ̂ is the Fourier transform of χ, and δ is Dirac’s delta; T is the two-dimensional
spatial spectrum of the correlation coefficient and α is the argument of q− λ. For the
MSE this leads to the following dispersion relation for qMS , the wavenumber of the
mean field:

q2
MS = k2

0 + 〈χ2〉h−2
0

∫ ∫ +∞

−∞
(k2

0(u+ v)− uλ · q)2

λ2 − k2
0

T (|q − λ|, α)dλ; (14)

λ is the wavenumber of the scattered fluctuation field. Using polar coordinates,
PRS expressed the (leading-order) attenuation coefficient, Im qMS in terms of the
semi-residue of the pole at λ = k0 of the integrand in (14):

ImqMS = 1
4
π〈χ2〉h−2

0 k3
0

∫ 2π

0

(
2u sin2 1

2
θ + v

)2
T
(
2k0 sin 1

2
θ, 1

2
θ − 1

2
π
)

dθ, (15)

where θ is the argument of λ and α = 1
2
θ − 1

2
π at resonance (λ = k0). Here we

have generalized their result by relaxing the condition that the depth fluctuations are
isotropic. The attenuation coefficient for the EMSE is found in the same way:

ImqE = 1
4
π〈χ2〉h−2

0 k3
0

∫ 2π

0

(
2uE sin2 1

2
θ + v

)2
T
(
2k0 sin 1

2
θ, 1

2
θ − 1

2
π
)

dθ

= 1
4
π〈χ2〉h−2

0 k3
0v

2

∫ 2π

0

T
(
2k0 sin 1

2
θ, 1

2
θ − 1

2
π
)

cos2 θdθ, (16)

where we denoted the coefficient of ∇χ in the EMSE by

uE = −v. (17)

We see that the value of ImqE is identical to the attenuation coefficient γ found
by PRS (see the next section), using the full (first-order) potential theory (after
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accounting for the directionality of T ). This is because the mean field evolution is
determined completely by the interaction with the components of the bathymetry
spatial spectrum (K, α) which are in Class I Bragg resonance with the mean field,
which has wavenumber q ≈ (k0, 0). Mathematically, this is due to the value of the
integral being determined by the residue at the pole. Physically this is due to the
dynamics of stochastic interaction being determined fully by the interaction at exact
resonance. The resonance condition is indeed

(K, α) = λ− (k0, 0) where λ = k0,

i.e. (
K = 2k0 sin 1

2
θ, α = 1

2
θ − 1

2
π
)
. (18)

For the MMSE, at resonance, the term s(∇2χ) can be written as

s(∇2χ) = −sK2χ = −s (2k0 sin 1
2
θ
)2
χ = −4sk2

0 sin2 1
2
θχ. (19)

Thus we get for the MMSE the attenuation coefficient:

ImqM = 1
4
π〈χ2〉h−2

0 k3
0

∫ 2π

0

(
v + (2u− 4s) sin2 1

2
θ
)2
T
(
2k0 sin 1

2
θ, 1

2
θ − 1

2
π
)

dθ

= 1
4
π〈χ2〉h−2

0 k3
0v

2

∫ 2π

0

T
(
2k0 sin 1

2
θ, 1

2
θ − 1

2
π
)

cos2 θdθ (20)

since from Leibniz rule we have

u = 2s− v (21)

Thus, the attenuation coefficient for the MMSE also agrees exactly with the full
first-order potential theory. This is again because the MMSE agrees with first-order
potential theory at Class I Bragg resonance. In the next section we address the
attenuation on a topography with a slowly varying mean depth, using first-order
potential theory. We use operator calculus to generalize the dispersion equation given
by PRS (cf. also Dyatlov & Pelinovsky 1990).

3. Solution using first-order potential theory
In order to study the scattering using potential flow theory, we use the augmented

MSE (cf. Agnon 1999). The idea is to choose a ‘locally fixed’ reference depth, h00,
and expand the bottom boundary condition in δh ≡ h− h00 = χ+ h0 − h00, in a small
neighbourhood. ∇ and h00 commute, which greatly simplifies the analysis.

The velocity potential obeys the Laplace equation:

φzz = −∇2φ. (22)

The linearized free surface boundary condition is

w ≡ φz =
ω2

g
ϕ, (23)

and the bottom boundary condition, which we expand (to second order in δh) about
the reference depth h00, is

φz = −∇ · (δh∇φ), z = −h00. (24)
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Following Rayleigh (1876) we use the compact notation

cos(z∇) ≡
∞∑
n=0

(−1)n

(2n)!
z2n∇2n, sin(z∇) ≡

∞∑
n=0

(−1)n

(2n+ 1)!
z2n+1∇2n+1,

and similar expressions for other trigonometric functions, including sinc(z∇) ≡
sin(z∇)/(z∇). These are representations of integral operators in the form of pseudo-
differential operators. It is useful to think of these operators, and the non-local
operators and kernels that will be introduced in what follows, as operators in Fourier
space:

FT (OP (∇)φ) = OP (ik)FT (φ), (25)

where FT stands for the Fourier transform (with respect to (x, y)) and OP is some
function; k is the Fourier variable (wavenumber).

The potential φ which solves the Laplace equation (22) is given by a Taylor series
in terms of the still-water-level values ϕ and w (the vertical velocity, φz), as follows:

φ = cos(z∇)ϕ+ zsinc(z∇)w (26)

(cf. Miles & Chamberlain 1998). Substituting this expression into (24), we obtain

sin(h00∇)∇ϕ+ cos(h00∇)w = −∇ · (δh(cos(h00∇)∇ϕ− sin(h00∇)w)). (27)

The manipulation of operator functions is essentially the same as that of scalar
functions and can be checked by applying the addition and multiplication properties
of ∇ to the Taylor series, term by term (cf. Courant & Hilbert 1953; Berg 1967, for
a simple account of operational calculus). Caution should be exercised regarding the
commuting of ∇ and h.

Operating on (27) with sec(h00∇) we obtain, to order ε,

(tan(h00∇)∇+ ω2/g)ϕ = − sec(h00∇)∇ · (δh sec(h00∇)∇ϕ). (28)

On the left-hand side we now have the operator( ∇ tan h∇
k tanh kh

+ 1

)
ω2

g
, (29)

where k is the real root of the dispersion relation. In addition, (1) has a series of
imaginary roots, ik(n), which stand for the evanescent modes:

gk(n) tan k(n)h = ω2, n = 1, 2, . . . .

As with an algebraic polynomial, the ‘dispersion operator’ (29) can be factored into
an infinite product: (∇2

k2
+ 1

) ∞∏
n=1

(
1− ∇2

(k(n))2

)
ω2

g
≡ ∇

2 + k2

G(h∇)
.

In considering propagating waves (i.e. non-evanescent) only the first factor, (∇2/k2+1),
is small (it is O(∇δh) and vanishes for free waves on a flat bottom). The other factors
were collected in 1/G(h∇). G is an operator which is even in h∇ and in κ ≡ hk:

G(p) ≡ h−1
00

p2 + κ2

p tan(p) + κ tanh(κ)
.
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Note that at resonance

G(κ) = lim
κ′→κ G(κ′) = g

(
d(ω2)

d(k2)

)−1

=
g

ccg
. (30)

In order to get an MSE-type equation, we operate on (28) by the non-singular
component, G(h∇). This yields a left-hand side in the form of the Helmholtz equation
(and of the MSE), appropriate for the restriction to propagating modes, but without
further approximations of the vertical structure (as those of the MSE, and its previous
linear and nonlinear extensions):

(∇2 + k2)ϕ = −G(h00∇) sec(h00∇)∇ · (δh sec(h00∇)∇ϕ). (31)

This is the form of the augmented MSE given by Agnon (1999). Now, we separate the
contribution of the (slow) variation of h0, and the (small) variation of χ. We expand
−G(h00∇) sec(h00∇)∇(h0 − h00) to O(∇h), with the result

(∇2 + k2)ϕ+ h−1
0 u∇χ · ∇ϕ = −G(h0∇) sec(h0∇)∇ · (χ sec(h0∇)∇ϕ). (32)

Note that the left-hand side is the classical MSE. We have used the rule

∇n(h0ϕ) = h0∇nϕ+ n∇h0∇n−1ϕ+ O(ε2). (33)

We now make a Liouville transformation (equation (7)). It leads to the augmented
MSE:

(∇2 + k2)ψ = −G(h0∇) sec(h0∇)∇ · (χ sec(h0∇)∇ψ). (34)

This is a pseudo-differential equation. It serves as a basis for consistent derivation of
approximate differential equations, such as the MMSE and EMSE, which accurately
describe resonant interaction (see § 4 and Agnon 1999). Following the derivation of
(10) and (12), we obtain

(∇2 + k2
0)ψ0 = −〈G(h0∇) sec(h0∇)∇ · (χ sec(h0∇)∇ψ′)〉, (35)

ψ′ = −(∇2 + k2
0)−1〈G(h0∇) sec(h0∇)∇ · (χ sec(h0∇)∇ψ0)〉. (36)

As with the EMSE, the augmented MSE leads this time to the following dispersion
relation for q, the wavenumber of the mean field:

q2 = k2
0 + 〈χ2〉h−2

0

∫ ∫ +∞

−∞
(k2

0(uA + vA)− uAλ · q)2

λ2 − k2
0

T (|q − λ|, α)dλ, (37)

where

vA = −uA = −h0G(iλh0)sech(λh0)sech(k0h0). (38)

We may express the (leading-order) attenuation coefficient, Imq in terms of the
semi-residue of the pole at λ = k0 of the integrand in (34). Since at resonance, λ = k0,

vA = −h0G(ik0h0) sech (k0h0) sech (k0h0) = v (39)

(cf. (30)), the leading-order result is

Imq = 1
4
π〈χ2〉h−2

0 k3
0v

2

∫ 2π

0

T (2k0 sin 1
2
θ, 1

2
θ − 1

2
π) cos2 θdθ (40)

which is the result quoted in § 2 (cf. PRS; Dyatlov & Pelinovsky 1990), generalized
to the case of uneven mean bottom (as well as relaxing the condition that the depth
fluctuations are isotropic). It is quite striking to note (as we have in § 2) that

Imq = ImqE = ImqM. (41)
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Figure 1. The spectrum of the incoherent component ψ′ scattered by χ(K ), plotted versus K , for
the three models: −−−, EMSE; − .− .−, AMSE; ———, MMSE. The spectrum is normalized
by the amplitude of χ(K ) and by the amplitude of the coherent wave. (a) kh = 2; Imq = 0.63;
(b) kh = 1; Imq = 0.015.

The wave vector of ψ′ is the sum of the wave vectors of χ and of ψ0. It is
interesting to compare the spectrum of ψ′, found from the augmented MSE, with the
corresponding spectrum for ψ′ found from the EMSE, given by (12), as well as the
values from the MMSE and MSE. Let us consider incident plane waves, given by
ψ̂0(λ) = aδ(λ− k00) with a wave vector k00 = (k00x, k00y) = (k0, 0). Since we assumed a
statistically homogenous bottom roughness, we obtain for the EMSE

〈|ψ̂′(λ)|2〉E =

(
a(−uλ · k00)

h0(−λ2 + q2
E)

)2

〈χ2〉T (k00 − λ), (42)

(we neglect Req − k0 which was shown to be very small by PRS). For the MSE

〈|ψ̂′(λ)|2〉MS =

(
a(k2

0w − uλ · k00)

h0(−λ2 + q2
MS )

)2

〈χ2〉T (k00 − λ), (43)

and for the MMSE

〈|ψ̂′(λ)|2〉M =

(
a(k2

0w − uλ · k00 + s(k00 − λ)2)

h0(−λ2 + q2
M)

)2

〈χ2〉T (k00 − λ). (44)

For the augmented MSE we obtain

〈|ψ̂′(λ)|2〉 =

(
a(−uAλ · k00)

h0(−λ2 + q2)

)2

〈χ2〉T (k00 − λ). (45)

The spectrum of ψ′ is not isotropic, even if the roughness χ is (since ψ0 is not
isotropic).

In figure 1 we plot the form of the coefficient of a2〈χ2〉 for the different model
equations. We see that the agreement is perfect only for Class I Bragg resonance
conditions. However, that is where the scattered wave is most pronounced. It is
precisely the values of the scattered wave at these resonance conditions that completely
determine the value of the attenuation coefficient of the mean field, Imq. This explains
the perfect agreement that is found for Imq. In figure 1(b) the value of Imq is smaller
and the three models are not graphically distinguishable.
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4. Discussion
The limitations of the MSE are well known. It has been closely studied and its

validity was found to be limited to cases 1 and 2, described in § 1. The errors in
the MSE are O(∇2h) and O((∇h)2). When considering Class I Bragg resonance of
waves in intermediate depth (k0h = O(1)), by bottom roughness with wavenumbers
|q−λ| = O(k0), we have O(∇2h) = O(k2

0δh) = O(∇h). Note that higher derivative terms
are also of the same order: O(∇nh) = O(kn0δh) = O(∇h), n = 3, 4, . . . . Thus the MSE
is no longer valid and we need to include the effect of all these terms. The EMSE
addresses this difficulty by adding the term −vh−1

0 ∇ · (χ∇ϕ) to the MSE. The MMSE
adds, instead, a different term to the MSE: sh−1(∇2h)ϕ. Both these model equations
were tested by a number of studies and compared to solutions of the full equations
and to experimental measurements. The agreement found was very good, especially
near Class I Bragg resonance, where the scattering is most significant. This agreement
is rather surprising. How can a single term account for the effect of all the terms in
∇nh, n = 2, 3, . . .? How can two such different terms, −vh−1

0 ∇ · (χ∇ϕ) in the EMSE
and sh−1(∇2h)ϕ in the MMSE, account for the same effect? The original derivations
of the EMSE and MMSE relied on the approximation of the vertical structure of the
scattered wave field in the form sech(kh) cosh k(z + h)ϕ, which is used in deriving the
MSE. This approximation no longer holds if we wish to obtain the correct terms of
O(∇2h). The MMSE is derived using an approximate trial function for the vertical
structure. The augmented MSE (31) is derived without such assumptions. Indeed,
G(h0∇) sec(h0∇)∇ · (χ sec(h0∇)∇ϕ) includes terms in ∇nh, n = 1, 2, . . . . We understand
the success of the EMSE and MMSE in describing scattering, by considering the
parameter of detuning from Class I Bragg resonance

µ = −(k + K )2 + k2, (46)

where k is the wave vector of the incident wave potential ψ0, and K is the wave vector
of the depth variation χ. k + K is the wave vector of the scattered wave potential
ψ′. At resonance the scattered wave has the same wavenumber, k, as the incident
wave. The error in the vertical velocity profile sech(kh) cosh k(z + h)ϕ used to derive
the EMSE and MMSE is O(µ), and thus the resulting equations are valid at Class I
Bragg resonance, as can also be seen when deriving them from the augmented MSE
(31) by setting µ to zero (on the right-hand side). For deterministic wave scattering,
resonant interaction plays a dominant role, leading to close agreement of the EMSE
and MMSE with measurements and with full (linear) theory. In stochastic scattering,
the agreement with the damping rate of the mean field is even more striking: it is
perfect. This is because it is completely determined by the resonant interaction.

5. Conclusion
First-order scattering of water waves by stochastic bottom roughness was con-

sidered, over variable bathymetry. The bottom roughness is homogeneous, but not
necessarily isotropic. The scattering of the mean field into the fluctuating field is com-
pletely determined by Class I Bragg resonance with the bottom. Hence, it was shown
that both the extended MSE and the modified MSE accurately describe this scattering
throughout the full range of scales. This is because these equations faithfully describe
resonant interaction, in contrast to the MSE which is an approximation, which holds
only for scattering by gentle roughness. One-dimensional bathymetries are a special
case of the two-dimensional configuration. The change in the phase speed of the
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mean field, due to Req, is not accurately reproduced by the model equations. PRS
have shown that this change is very small.

This research was supported by The Fund for the Promotion of Research at the
Technion and by INTAS 99-1068.
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